Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Finite Time Analysis of Constrained Natural Critic-Actor Algorithm with Improved Sample Complexity (2510.04189v1)

Published 5 Oct 2025 in cs.LG and cs.AI

Abstract: Recent studies have increasingly focused on non-asymptotic convergence analyses for actor-critic (AC) algorithms. One such effort introduced a two-timescale critic-actor algorithm for the discounted cost setting using a tabular representation, where the usual roles of the actor and critic are reversed. However, only asymptotic convergence was established there. Subsequently, both asymptotic and non-asymptotic analyses of the critic-actor algorithm with linear function approximation were conducted. In our work, we introduce the first natural critic-actor algorithm with function approximation for the long-run average cost setting and under inequality constraints. We provide the non-asymptotic convergence guarantees for this algorithm. Our analysis establishes optimal learning rates and we also propose a modification to enhance sample complexity. We further show the results of experiments on three different Safety-Gym environments where our algorithm is found to be competitive in comparison with other well known algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube