Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Multiplicative Turing Ensembles, Pareto's Law, and Creativity (2510.04167v1)

Published 5 Oct 2025 in cs.IT, cs.CC, math-ph, math.IT, and math.MP

Abstract: We study integer-valued multiplicative dynamics driven by i.i.d. prime multipliers and connect their macroscopic statistics to universal codelengths. We introduce the Multiplicative Turing Ensemble (MTE) and show how it arises naturally - though not uniquely - from ensembles of probabilistic Turing machines. Our modeling principle is variational: taking Elias' Omega codelength as an energy and imposing maximum entropy constraints yields a canonical Gibbs prior on integers and, by restriction, on primes. Under mild tail assumptions, this prior induces exponential tails for log-multipliers (up to slowly varying corrections), which in turn generate Pareto tails for additive gaps. We also prove time-average laws for the Omega codelength along MTE trajectories. Empirically, on Debian and PyPI package size datasets, a scaled Omega prior achieves the lowest KL divergence against codelength histograms. Taken together, the theory-data comparison suggests a qualitative split: machine-adapted regimes (Gibbs-aligned, finite first moment) exhibit clean averaging behavior, whereas human-generated complexity appears to sit beyond this regime, with tails heavy enough to produce an unbounded first moment, and therefore no averaging of the same kind.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.