Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi Language Models for On-the-Fly Syntax Highlighting (2510.04166v1)

Published 5 Oct 2025 in cs.SE and cs.AI

Abstract: Syntax highlighting is a critical feature in modern software development environments, enhancing code readability and developer productivity. However, delivering accurate highlighting in real time remains challenging for online and web-based development tools due to strict time and memory constraints on backend services. These systems must serve highlights rapidly and frequently, even when code is partially valid or invalid. This has led to on-the-fly syntax highlighting, where visual annotations are generated just before content is served, often at high request rates and under incomplete input conditions. To meet these demands efficiently, state-of-the-art models use deep learning to learn the behavior of brute-force syntax highlighting resolvers, tools that are easy to implement but too slow for production. Through the Deep Abstraction process, brute-force strategies are encoded into fast statistical models that achieve both high accuracy and low-latency inference. Despite their success, such models face key challenges: they support only one programming language per model, require large datasets from slow brute-force generators, and involve resource-intensive training. In multi-language environments, this means maintaining multiple independent models, increasing system complexity and operational cost. This work addresses these issues by introducing a unified model capable of highlighting up to six mainstream programming languages, reducing deployment complexity by a factor of six and improving performance on unseen languages. A novel normalization technique significantly enhances model generalization, while few-shot learning experiments show that a small number of oracle samples can replace large datasets, minimizing dependence on brute-force generators. Combined, these innovations enable efficient, scalable, and cost-effective syntax highlighting across diverse programming languages.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 221 likes.

Upgrade to Pro to view all of the tweets about this paper: