Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Proofs of quantum memory (2510.04159v1)

Published 5 Oct 2025 in quant-ph, cs.CC, and cs.CR

Abstract: With the rapid advances in quantum computer architectures and the emerging prospect of large-scale quantum memory, it is becoming essential to classically verify that remote devices genuinely allocate the promised quantum memory with specified number of qubits and coherence time. In this paper, we introduce a new concept, proofs of quantum memory (PoQM). A PoQM is an interactive protocol between a classical probabilistic polynomial-time (PPT) verifier and a quantum polynomial-time (QPT) prover over a classical channel where the verifier can verify that the prover has possessed a quantum memory with a certain number of qubits during a specified period of time. PoQM generalize the notion of proofs of quantumness (PoQ) [Brakerski, Christiano, Mahadev, Vazirani, and Vidick, JACM 2021]. Our main contributions are a formal definition of PoQM and its constructions based on hardness of LWE. Specifically, we give two constructions of PoQM. The first is of a four-round and has negligible soundness error under subexponential-hardness of LWE. The second is of a polynomial-round and has inverse-polynomial soundness error under polynomial-hardness of LWE. As a lowerbound of PoQM, we also show that PoQM imply one-way puzzles. Moreover, a certain restricted version of PoQM implies quantum computation classical communication (QCCC) key exchange.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.