Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Training of Spiking Neural Networks by Spike-aware Data Pruning (2510.04098v1)

Published 5 Oct 2025 in cs.NE and cs.AI

Abstract: Spiking neural networks (SNNs), recognized as an energy-efficient alternative to traditional artificial neural networks (ANNs), have advanced rapidly through the scaling of models and datasets. However, such scaling incurs considerable training overhead, posing challenges for researchers with limited computational resources and hindering the sustained development of SNNs. Data pruning is a promising strategy for accelerating training by retaining the most informative examples and discarding redundant ones, but it remains largely unexplored in SNNs. Directly applying ANN-based data pruning methods to SNNs fails to capture the intrinsic importance of examples and suffers from high gradient variance. To address these challenges, we propose a novel spike-aware data pruning (SADP) method. SADP reduces gradient variance by determining each example's selection probability to be proportional to its gradient norm, while avoiding the high cost of direct gradient computation through an efficient upper bound, termed spike-aware importance score. This score accounts for the influence of all-or-nothing spikes on the gradient norm and can be computed with negligible overhead. Extensive experiments across diverse datasets and architectures demonstrate that SADP consistently outperforms data pruning baselines and achieves training speedups close to the theoretical maxima at different pruning ratios. Notably, SADP reduces training time by 35% on ImageNet while maintaining accuracy comparable to that of full-data training. This work, therefore, establishes a data-centric paradigm for efficient SNN training and paves the way for scaling SNNs to larger models and datasets. The source code will be released publicly after the review process.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.