Papers
Topics
Authors
Recent
2000 character limit reached

PoLi-RL: A Point-to-List Reinforcement Learning Framework for Conditional Semantic Textual Similarity (2510.04080v1)

Published 5 Oct 2025 in cs.CL

Abstract: Conditional Semantic Textual Similarity (C-STS) measures the semantic proximity between text segments under a specific condition, thereby overcoming the ambiguity inherent in traditional STS. However, existing methods are largely confined to discriminative models, failing to fully integrate recent breakthroughs in the NLP community concerning LLMs and Reinforcement Learning (RL). RL is a particularly well-suited paradigm for this task, as it can directly optimize the non-differentiable Spearman ranking metric and guide the reasoning process required by C-STS. However, we find that naively applying listwise RL fails to produce meaningful improvements, as the model is overwhelmed by complex, coarse-grained reward signals. To address this challenge, we introduce PoLi-RL, a novel Point-to-List Reinforcement Learning framework. PoLi-RL employs a two-stage curriculum: it first trains the model with simple pointwise rewards to establish fundamental scoring capabilities, then transitions to a hybrid reward that combines pointwise, pairwise, and listwise objectives to refine the model's ability to discern subtle semantic distinctions. Crucially, we propose an innovative Parallel Slice Ranking Reward (PSRR) mechanism that computes ranking rewards in parallel slices, where each slice comprises same-indexed completions from different samples. This provides a precise, differentiated learning signal for each individual completion, enabling granular credit assignment and effective optimization. On the official C-STS benchmark, PoLi-RL achieves a Spearman correlation coefficient of 48.18, establishing a new SOTA for the cross-encoder architecture. As the first work to successfully apply RL to C-STS, our study introduces a powerful and precise paradigm for training LLMs on complex, ranking-based conditional judgment tasks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.