Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

PrivSpike: Employing Homomorphic Encryption for Private Inference of Deep Spiking Neural Networks (2510.03995v1)

Published 5 Oct 2025 in cs.CR and cs.AI

Abstract: Deep learning has become a cornerstone of modern machine learning. It relies heavily on vast datasets and significant computational resources for high performance. This data often contains sensitive information, making privacy a major concern in deep learning. Spiking Neural Networks (SNNs) have emerged as an energy-efficient alternative to conventional deep learning approaches. Nevertheless, SNNs still depend on large volumes of data, inheriting all the privacy challenges of deep learning. Homomorphic encryption addresses this challenge by allowing computations to be performed on encrypted data, ensuring data confidentiality throughout the entire processing pipeline. In this paper, we introduce PRIVSPIKE, a privacy-preserving inference framework for SNNs using the CKKS homomorphic encryption scheme. PRIVSPIKE supports arbitrary depth SNNs and introduces two key algorithms for evaluating the Leaky Integrate-and-Fire activation function: (1) a polynomial approximation algorithm designed for high-performance SNN inference, and (2) a novel scheme-switching algorithm that optimizes precision at a higher computational cost. We evaluate PRIVSPIKE on MNIST, CIFAR-10, Neuromorphic MNIST, and CIFAR-10 DVS using models from LeNet-5 and ResNet-19 architectures, achieving encrypted inference accuracies of 98.10%, 79.3%, 98.1%, and 66.0%, respectively. On a consumer-grade CPU, SNN LeNet-5 models achieved inference times of 28 seconds on MNIST and 212 seconds on Neuromorphic MNIST. For SNN ResNet-19 models, inference took 784 seconds on CIFAR-10 and 1846 seconds on CIFAR-10 DVS. These results establish PRIVSPIKE as a viable and efficient solution for secure SNN inference, bridging the gap between energy-efficient deep neural networks and strong cryptographic privacy guarantees while outperforming prior encrypted SNN solutions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.