Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Mathematical Explanation of Transformers for Large Language Models and GPTs (2510.03989v1)

Published 5 Oct 2025 in cs.LG, cs.AI, cs.NA, and math.NA

Abstract: The Transformer architecture has revolutionized the field of sequence modeling and underpins the recent breakthroughs in LLMs. However, a comprehensive mathematical theory that explains its structure and operations remains elusive. In this work, we propose a novel continuous framework that rigorously interprets the Transformer as a discretization of a structured integro-differential equation. Within this formulation, the self-attention mechanism emerges naturally as a non-local integral operator, and layer normalization is characterized as a projection to a time-dependent constraint. This operator-theoretic and variational perspective offers a unified and interpretable foundation for understanding the architecture's core components, including attention, feedforward layers, and normalization. Our approach extends beyond previous theoretical analyses by embedding the entire Transformer operation in continuous domains for both token indices and feature dimensions. This leads to a principled and flexible framework that not only deepens theoretical insight but also offers new directions for architecture design, analysis, and control-based interpretations. This new interpretation provides a step toward bridging the gap between deep learning architectures and continuous mathematical modeling, and contributes a foundational perspective to the ongoing development of interpretable and theoretically grounded neural network models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.