Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Self-Speculative Masked Diffusions (2510.03929v1)

Published 4 Oct 2025 in stat.ML and cs.LG

Abstract: We present self-speculative masked diffusions, a new class of masked diffusion generative models for discrete data that require significantly fewer function evaluations to generate samples. Standard masked diffusion models predict factorized logits over currently masked positions. A number of masked positions are then sampled, however, the factorization approximation means that sampling too many positions in one go leads to poor sample quality. As a result, many simulation steps and therefore neural network function evaluations are required to generate high-quality data. We reduce the computational burden by generating non-factorized predictions over masked positions. This is achieved by modifying the final transformer attention mask from non-causal to causal, enabling draft token generation and parallel validation via a novel, model-integrated speculative sampling mechanism. This results in a non-factorized predictive distribution over masked positions in a single forward pass. We apply our method to GPT2 scale text modelling and protein sequences generation, finding that we can achieve a ~2x reduction in the required number of network forward passes relative to standard masked diffusion models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

alphaXiv

  1. Self-Speculative Masked Diffusions (15 likes, 0 questions)