Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

SDAKD: Student Discriminator Assisted Knowledge Distillation for Super-Resolution Generative Adversarial Networks (2510.03870v1)

Published 4 Oct 2025 in cs.CV

Abstract: Generative Adversarial Networks (GANs) achieve excellent performance in generative tasks, such as image super-resolution, but their computational requirements make difficult their deployment on resource-constrained devices. While knowledge distillation is a promising research direction for GAN compression, effectively training a smaller student generator is challenging due to the capacity mismatch between the student generator and the teacher discriminator. In this work, we propose Student Discriminator Assisted Knowledge Distillation (SDAKD), a novel GAN distillation methodology that introduces a student discriminator to mitigate this capacity mismatch. SDAKD follows a three-stage training strategy, and integrates an adapted feature map distillation approach in its last two training stages. We evaluated SDAKD on two well-performing super-resolution GANs, GCFSR and Real-ESRGAN. Our experiments demonstrate consistent improvements over the baselines and SOTA GAN knowledge distillation methods. The SDAKD source code will be made openly available upon acceptance of the paper.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.