Papers
Topics
Authors
Recent
2000 character limit reached

On Provable Benefits of Muon in Federated Learning (2510.03866v1)

Published 4 Oct 2025 in cs.LG and stat.ML

Abstract: The recently introduced optimizer, Muon, has gained increasing attention due to its superior performance across a wide range of applications. However, its effectiveness in federated learning remains unexplored. To address this gap, this paper investigates the performance of Muon in the federated learning setting. Specifically, we propose a new algorithm, FedMuon, and establish its convergence rate for nonconvex problems. Our theoretical analysis reveals multiple favorable properties of FedMuon. In particular, due to its orthonormalized update direction, the learning rate of FedMuon is independent of problem-specific parameters, and, importantly, it can naturally accommodate heavy-tailed noise. The extensive experiments on a variety of neural network architectures validate the effectiveness of the proposed algorithm.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.