Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive and Explainable AI Agents for Anomaly Detection in Critical IoT Infrastructure using LLM-Enhanced Contextual Reasoning (2510.03859v1)

Published 4 Oct 2025 in cs.AI and cs.LG

Abstract: Ensuring that critical IoT systems function safely and smoothly depends a lot on finding anomalies quickly. As more complex systems, like smart healthcare, energy grids and industrial automation, appear, it is easier to see the shortcomings of older methods of detection. Monitoring failures usually happen in dynamic, high dimensional situations, especially when data is incomplete, messy or always evolving. Such limits point out the requirement for adaptive, intelligent systems that always improve and think. LLMs are now capable of significantly changing how context is understood and semantic inference is done across all types of data. This proposal suggests using an LLM supported contextual reasoning method along with XAI agents to improve how anomalies are found in significant IoT environments. To discover hidden patterns and notice inconsistencies in data streams, it uses attention methods, avoids dealing with details from every time step and uses memory buffers with meaning. Because no code AI stresses transparency and interpretability, people can check and accept the AI's decisions, helping ensure AI follows company policies. The two architectures are put together in a test that compares the results of the traditional model with those of the suggested LLM enhanced model. Important measures to check are the accuracy of detection, how much inaccurate information is included in the results, how clearly the findings can be read and how fast the system responds under different test situations. The metaheuristic is tested in simulations of real world smart grid and healthcare contexts to check its adaptability and reliability. From the study, we see that the new approach performs much better than most existing models in both accuracy and interpretation, so it could be a good fit for future anomaly detection tasks in IoT

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.