Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the $O(1/T)$ Convergence of Alternating Gradient Descent-Ascent in Bilinear Games (2510.03855v1)

Published 4 Oct 2025 in cs.GT

Abstract: We study the alternating gradient descent-ascent (AltGDA) algorithm in two-player zero-sum games. Alternating methods, where players take turns to update their strategies, have long been recognized as simple and practical approaches for learning in games, exhibiting much better numerical performance than their simultaneous counterparts. However, our theoretical understanding of alternating algorithms remains limited, and results are mostly restricted to the unconstrained setting. We show that for two-player zero-sum games that admit an interior Nash equilibrium, AltGDA converges at an $O(1/T)$ ergodic convergence rate when employing a small constant stepsize. This is the first result showing that alternation improves over the simultaneous counterpart of GDA in the constrained setting. For games without an interior equilibrium, we show an $O(1/T)$ local convergence rate with a constant stepsize that is independent of any game-specific constants. In a more general setting, we develop a performance estimation programming (PEP) framework to jointly optimize the AltGDA stepsize along with its worst-case convergence rate. The PEP results indicate that AltGDA may achieve an $O(1/T)$ convergence rate for a finite horizon $T$, whereas its simultaneous counterpart appears limited to an $O(1/\sqrt{T})$ rate.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube