Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robust Batched Bandits (2510.03798v1)

Published 4 Oct 2025 in cs.LG and stat.ML

Abstract: The batched multi-armed bandit (MAB) problem, in which rewards are collected in batches, is crucial for applications such as clinical trials. Existing research predominantly assumes light-tailed reward distributions, yet many real-world scenarios, including clinical outcomes, exhibit heavy-tailed characteristics. This paper bridges this gap by proposing robust batched bandit algorithms designed for heavy-tailed rewards, within both finite-arm and Lipschitz-continuous settings. We reveal a surprising phenomenon: in the instance-independent regime, as well as in the Lipschitz setting, heavier-tailed rewards necessitate a smaller number of batches to achieve near-optimal regret. In stark contrast, for the instance-dependent setting, the required number of batches to attain near-optimal regret remains invariant with respect to tail heaviness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube