Papers
Topics
Authors
Recent
2000 character limit reached

A Benchmark Study of Deep Learning Methods for Multi-Label Pediatric Electrocardiogram-Based Cardiovascular Disease Classification

Published 4 Oct 2025 in eess.SP and cs.LG | (2510.03780v1)

Abstract: Cardiovascular disease (CVD) is a major pediatric health burden, and early screening is of critical importance. Electrocardiography (ECG), as a noninvasive and accessible tool, is well suited for this purpose. This paper presents the first benchmark study of deep learning for multi-label pediatric CVD classification on the recently released ZZU-pECG dataset, comprising 3716 recordings with 19 CVD categories. We systematically evaluate four representative paradigms--ResNet-1D, BiLSTM, Transformer, and Mamba 2--under both 9-lead and 12-lead configurations. All models achieved strong results, with Hamming Loss as low as 0.0069 and F1-scores above 85% in most settings. ResNet-1D reached a macro-F1 of 94.67% on the 12-lead subset, while BiLSTM and Transformer also showed competitive performance. Per-class analysis indicated challenges for rare conditions such as hypertrophic cardiomyopathy in the 9-lead subset, reflecting the effect of limited positive samples. This benchmark establishes reusable baselines and highlights complementary strengths across paradigms. It further points to the need for larger-scale, multi-center validation, age-stratified analysis, and broader disease coverage to support real-world pediatric ECG applications.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.