Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Overlooked Value of Test-time Reference Sets in Visual Place Recognition (2510.03751v1)

Published 4 Oct 2025 in cs.CV

Abstract: Given a query image, Visual Place Recognition (VPR) is the task of retrieving an image of the same place from a reference database with robustness to viewpoint and appearance changes. Recent works show that some VPR benchmarks are solved by methods using Vision-Foundation-Model backbones and trained on large-scale and diverse VPR-specific datasets. Several benchmarks remain challenging, particularly when the test environments differ significantly from the usual VPR training datasets. We propose a complementary, unexplored source of information to bridge the train-test domain gap, which can further improve the performance of State-of-the-Art (SOTA) VPR methods on such challenging benchmarks. Concretely, we identify that the test-time reference set, the "map", contains images and poses of the target domain, and must be available before the test-time query is received in several VPR applications. Therefore, we propose to perform simple Reference-Set-Finetuning (RSF) of VPR models on the map, boosting the SOTA (~2.3% increase on average for Recall@1) on these challenging datasets. Finetuned models retain generalization, and RSF works across diverse test datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 33 likes.

Upgrade to Pro to view all of the tweets about this paper: