Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 74 tok/s
Gemini 2.5 Flash 163 tok/s Pro
Gemini 2.5 Pro 46 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TreePrompt: Leveraging Hierarchical Few-Shot Example Selection for Improved English-Persian and English-German Translation (2510.03748v1)

Published 4 Oct 2025 in cs.CL and cs.AI

Abstract: LLMs have consistently demonstrated strong performance in machine translation, especially when guided by high-quality prompts. Few-shot prompting is an effective technique to improve translation quality; however, most existing example selection methods focus solely on query-to-example similarity and do not account for the quality of the examples. In this work, we propose TreePrompt, a novel example selection approach that learns LLM preferences to identify high-quality, contextually relevant examples within a tree-structured framework. To further explore the balance between similarity and quality, we combine TreePrompt with K-Nearest Neighbors (K-NN) and Adaptive Few-Shot Prompting (AFSP). Evaluations on two language pairs - English-Persian (MIZAN) and English-German (WMT19) - show that integrating TreePrompt with AFSP or Random selection leads to improved translation performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.