TreePrompt: Leveraging Hierarchical Few-Shot Example Selection for Improved English-Persian and English-German Translation (2510.03748v1)
Abstract: LLMs have consistently demonstrated strong performance in machine translation, especially when guided by high-quality prompts. Few-shot prompting is an effective technique to improve translation quality; however, most existing example selection methods focus solely on query-to-example similarity and do not account for the quality of the examples. In this work, we propose TreePrompt, a novel example selection approach that learns LLM preferences to identify high-quality, contextually relevant examples within a tree-structured framework. To further explore the balance between similarity and quality, we combine TreePrompt with K-Nearest Neighbors (K-NN) and Adaptive Few-Shot Prompting (AFSP). Evaluations on two language pairs - English-Persian (MIZAN) and English-German (WMT19) - show that integrating TreePrompt with AFSP or Random selection leads to improved translation performance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.