Papers
Topics
Authors
Recent
2000 character limit reached

Person-Centric Annotations of LAION-400M: Auditing Bias and Its Transfer to Models (2510.03721v1)

Published 4 Oct 2025 in cs.CV, cs.CL, cs.CY, and cs.LG

Abstract: Vision-LLMs trained on large-scale multimodal datasets show strong demographic biases, but the role of training data in producing these biases remains unclear. A major barrier has been the lack of demographic annotations in web-scale datasets such as LAION-400M. We address this gap by creating person-centric annotations for the full dataset, including over 276 million bounding boxes, perceived gender and race/ethnicity labels, and automatically generated captions. These annotations are produced through validated automatic labeling pipelines combining object detection, multimodal captioning, and finetuned classifiers. Using them, we uncover demographic imbalances and harmful associations, such as the disproportionate linking of men and individuals perceived as Black or Middle Eastern with crime-related and negative content. We also show that 60-70% of gender bias in CLIP and Stable Diffusion can be linearly explained by direct co-occurrences in the data. Our resources establish the first large-scale empirical link between dataset composition and downstream model bias.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.