A Survey of LLM-Based Applications in Programming Education: Balancing Automation and Human Oversight (2510.03719v1)
Abstract: Novice programmers benefit from timely, personalized support that addresses individual learning gaps, yet the availability of instructors and teaching assistants is inherently limited. LLMs present opportunities to scale such support, though their effectiveness depends on how well technical capabilities are aligned with pedagogical goals. This survey synthesizes recent work on LLM applications in programming education across three focal areas: formative code feedback, assessment, and knowledge modeling. We identify recurring design patterns in how these tools are applied and find that interventions are most effective when educator expertise complements model output through human-in-the-loop oversight, scaffolding, and evaluation. Fully automated approaches are often constrained in capturing the pedagogical nuances of programming education, although human-in-the-loop designs and course specific adaptation offer promising directions for future improvement. Future research should focus on improving transparency, strengthening alignment with pedagogy, and developing systems that flexibly adapt to the needs of varied learning contexts.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.