Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Neural Bayesian Filtering (2510.03614v1)

Published 4 Oct 2025 in cs.LG, cs.AI, and stat.ML

Abstract: We present Neural Bayesian Filtering (NBF), an algorithm for maintaining distributions over hidden states, called beliefs, in partially observable systems. NBF is trained to find a good latent representation of the beliefs induced by a task. It maps beliefs to fixed-length embedding vectors, which condition generative models for sampling. During filtering, particle-style updates compute posteriors in this embedding space using incoming observations and the environment's dynamics. NBF combines the computational efficiency of classical filters with the expressiveness of deep generative models - tracking rapidly shifting, multimodal beliefs while mitigating the risk of particle impoverishment. We validate NBF in state estimation tasks in three partially observable environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.