Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cross-Modal Content Optimization for Steering Web Agent Preferences (2510.03612v1)

Published 4 Oct 2025 in cs.AI and cs.CR

Abstract: Vision-LLM (VLM)-based web agents increasingly power high-stakes selection tasks like content recommendation or product ranking by combining multimodal perception with preference reasoning. Recent studies reveal that these agents are vulnerable against attackers who can bias selection outcomes through preference manipulations using adversarial pop-ups, image perturbations, or content tweaks. Existing work, however, either assumes strong white-box access, with limited single-modal perturbations, or uses impractical settings. In this paper, we demonstrate, for the first time, that joint exploitation of visual and textual channels yields significantly more powerful preference manipulations under realistic attacker capabilities. We introduce Cross-Modal Preference Steering (CPS) that jointly optimizes imperceptible modifications to an item's visual and natural language descriptions, exploiting CLIP-transferable image perturbations and RLHF-induced linguistic biases to steer agent decisions. In contrast to prior studies that assume gradient access, or control over webpages, or agent memory, we adopt a realistic black-box threat setup: a non-privileged adversary can edit only their own listing's images and textual metadata, with no insight into the agent's model internals. We evaluate CPS on agents powered by state-of-the-art proprietary and open source VLMs including GPT-4.1, Qwen-2.5VL and Pixtral-Large on both movie selection and e-commerce tasks. Our results show that CPS is significantly more effective than leading baseline methods. For instance, our results show that CPS consistently outperforms baselines across all models while maintaining 70% lower detection rates, demonstrating both effectiveness and stealth. These findings highlight an urgent need for robust defenses as agentic systems play an increasingly consequential role in society.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: