Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TS-Reasoner: Aligning Time Series Foundation Models with LLM Reasoning (2510.03519v1)

Published 3 Oct 2025 in cs.CL and cs.AI

Abstract: Time series reasoning is crucial to decision-making in diverse domains, including finance, energy usage, traffic, weather, and scientific discovery. While existing time series foundation models (TSFMs) can capture low-level dynamic patterns and provide accurate forecasting, further analysis usually requires additional background knowledge and sophisticated reasoning, which are lacking in most TSFMs but can be achieved through LLMs. On the other hand, without expensive post-training, LLMs often struggle with the numerical understanding of time series data. Although it is intuitive to integrate the two types of models, developing effective training recipes that align the two modalities for reasoning tasks is still an open challenge. To this end, we propose TS-Reasoner that aligns the latent representations of TSFMs with the textual inputs of LLMs for downstream understanding/reasoning tasks. Specifically, we propose a simple yet effective method to curate diverse, synthetic pairs of time series and textual captions for alignment training. We then develop a two-stage training recipe that applies instruction finetuning after the alignment pretraining. Unlike existing works that train an LLM to take time series as inputs, we leverage a pretrained TSFM and freeze it during training. Extensive experiments on several benchmarks demonstrate that TS-Reasoner not only outperforms a wide range of prevailing LLMs, Vision LLMs (VLMs), and Time Series LLMs, but also achieves this with remarkable data efficiency, e.g., using less than half the training data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.