Platonic Transformers: A Solid Choice For Equivariance (2510.03511v2)
Abstract: While widespread, Transformers lack inductive biases for geometric symmetries common in science and computer vision. Existing equivariant methods often sacrifice the efficiency and flexibility that make Transformers so effective through complex, computationally intensive designs. We introduce the Platonic Transformer to resolve this trade-off. By defining attention relative to reference frames from the Platonic solid symmetry groups, our method induces a principled weight-sharing scheme. This enables combined equivariance to continuous translations and Platonic symmetries, while preserving the exact architecture and computational cost of a standard Transformer. Furthermore, we show that this attention is formally equivalent to a dynamic group convolution, which reveals that the model learns adaptive geometric filters and enables a highly scalable, linear-time convolutional variant. Across diverse benchmarks in computer vision (CIFAR-10), 3D point clouds (ScanObjectNN), and molecular property prediction (QM9, OMol25), the Platonic Transformer achieves competitive performance by leveraging these geometric constraints at no additional cost.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.