Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Task-Level Contrastiveness for Cross-Domain Few-Shot Learning (2510.03509v1)

Published 3 Oct 2025 in cs.LG

Abstract: Few-shot classification and meta-learning methods typically struggle to generalize across diverse domains, as most approaches focus on a single dataset, failing to transfer knowledge across various seen and unseen domains. Existing solutions often suffer from low accuracy, high computational costs, and rely on restrictive assumptions. In this paper, we introduce the notion of task-level contrastiveness, a novel approach designed to address issues of existing methods. We start by introducing simple ways to define task augmentations, and thereafter define a task-level contrastive loss that encourages unsupervised clustering of task representations. Our method is lightweight and can be easily integrated within existing few-shot/meta-learning algorithms while providing significant benefits. Crucially, it leads to improved generalization and computational efficiency without requiring prior knowledge of task domains. We demonstrate the effectiveness of our approach through different experiments on the MetaDataset benchmark, where it achieves superior performance without additional complexity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.