Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimal Regularization Under Uncertainty: Distributional Robustness and Convexity Constraints (2510.03464v1)

Published 3 Oct 2025 in math.OC, math.MG, math.ST, stat.ML, and stat.TH

Abstract: Regularization is a central tool for addressing ill-posedness in inverse problems and statistical estimation, with the choice of a suitable penalty often determining the reliability and interpretability of downstream solutions. While recent work has characterized optimal regularizers for well-specified data distributions, practical deployments are often complicated by distributional uncertainty and the need to enforce structural constraints such as convexity. In this paper, we introduce a framework for distributionally robust optimal regularization, which identifies regularizers that remain effective under perturbations of the data distribution. Our approach leverages convex duality to reformulate the underlying distributionally robust optimization problem, eliminating the inner maximization and yielding formulations that are amenable to numerical computation. We show how the resulting robust regularizers interpolate between memorization of the training distribution and uniform priors, providing insights into their behavior as robustness parameters vary. For example, we show how certain ambiguity sets, such as those based on the Wasserstein-1 distance, naturally induce regularity in the optimal regularizer by promoting regularizers with smaller Lipschitz constants. We further investigate the setting where regularizers are required to be convex, formulating a convex program for their computation and illustrating their stability with respect to distributional shifts. Taken together, our results provide both theoretical and computational foundations for designing regularizers that are reliable under model uncertainty and structurally constrained for robust deployment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: