Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bias and Coverage Properties of the WENDy-IRLS Algorithm (2510.03365v1)

Published 3 Oct 2025 in stat.ME, cs.LG, and stat.ML

Abstract: The Weak form Estimation of Nonlinear Dynamics (WENDy) method is a recently proposed class of parameter estimation algorithms that exhibits notable noise robustness and computational efficiency. This work examines the coverage and bias properties of the original WENDy-IRLS algorithm's parameter and state estimators in the context of the following differential equations: Logistic, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark. The estimators' performance was studied in simulated data examples, under four different noise distributions (normal, log-normal, additive censored normal, and additive truncated normal), and a wide range of noise, reaching levels much higher than previously tested for this algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: