Papers
Topics
Authors
Recent
2000 character limit reached

The View From Space: Navigating Instrumentation Differences with EOFMs

Published 1 Oct 2025 in cs.CV, cs.AI, and cs.LG | (2510.03316v1)

Abstract: Earth Observation Foundation Models (EOFMs) have exploded in prevalence as tools for processing the massive volumes of remotely sensed and other earth observation data, and for delivering impact on the many essential earth monitoring tasks. An emerging trend posits using the outputs of pre-trained models as 'embeddings' which summarize high dimensional data to be used for generic tasks such as similarity search and content-specific queries. However, most EOFM models are trained only on single modalities of data and then applied or benchmarked by matching bands across different modalities. It is not clear from existing work what impact diverse sensor architectures have on the internal representations of the present suite of EOFMs. We show in this work that the representation space of EOFMs is highly sensitive to sensor architecture and that understanding this difference gives a vital perspective on the pitfalls of current EOFM design and signals for how to move forward as model developers, users, and a community guided by robust remote-sensing science.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.