CAFL-L: Constraint-Aware Federated Learning with Lagrangian Dual Optimization for On-Device Language Models (2510.03298v1)
Abstract: We introduce Constraint-Aware Federated Learning with Lagrangian Dual Optimization (CAFL-L), a principled extension of FedAvg that explicitly incorporates device-level resource constraints including energy, communication, memory, and thermal budgets. CAFL-L employs Lagrangian dual optimization to dynamically adapt training hyperparameters -- freezing depth, local steps, batch size, and communication compression -- while preserving training stability through token-budget preservation via gradient accumulation. Experiments on a character-level LLM demonstrate that CAFL-L achieves superior constraint satisfaction compared to standard FedAvg (reducing memory usage by 20% and communication by 95%) while maintaining competitive validation performance, making it practical for deployment on resource-constrained edge devices.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.