Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size (2510.03275v1)

Published 27 Sep 2025 in cs.LG, cs.AI, and cs.CV

Abstract: LLMs face significant computational and memory challenges, making extremely low-bit quantization crucial for their efficient deployment. In this work, we introduce SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size, a novel framework that enables extremely low-bit quantization of LLMs while preserving their linguistic reasoning capabilities. A distinctive feature of SDQ-LLM is the continuous adjustability of the Over-Sampling Ratio (OSR), enabling dynamic adaptation to memory or VRAM constraints by selecting fractional OSR (e.g. 2.5 times) for an optimal trade-off between model size and accuracy. SDQ-LLM uses upsampling combined with Sigma-Delta Quantizer to binarize or ternarize LLMs weights, encoding high-precision parameters into 1-bit or 1.58-bit representations, replacing the multiplication operations within linear layers with addition. This approach significantly enhances inference efficiency under extremely low-bit quantization. To further reduce the loss of quantization precision, we incorporate Hadamard-based weight smoothing prior to quantization, improving the stability and robustness of the weight representations. Furthermore, to fully leverage the continuity of the OSR and reduce precision loss, recognizing the correlation between quantization sensitivity and weight variance, we propose a fine-grained, layer- and linear-wise OSR allocation strategy, MultiOSR. This strategy distributes OSR both across layers and within each layer, based on weight variance and parameter scale. Finally, extensive experiments on OPT and LLaMA model families demonstrate that SDQ-LLM achieves a more efficient and high-precision performance even under highly aggressive low-OSR settings. Our code is available at https://github.com/Dreamlittlecat/LLM-Quant-Factory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
Reddit Logo Streamline Icon: https://streamlinehq.com