Papers
Topics
Authors
Recent
2000 character limit reached

Solving the Granularity Mismatch: Hierarchical Preference Learning for Long-Horizon LLM Agents (2510.03253v1)

Published 26 Sep 2025 in cs.LG and cs.AI

Abstract: LLMs as autonomous agents are increasingly tasked with solving complex, long-horizon problems. Aligning these agents via preference-based offline methods like Direct Preference Optimization (DPO) is a promising direction, yet it faces a critical granularity mismatch. Trajectory-level DPO provides a signal that is too coarse for precise credit assignment, while step-level DPO is often too myopic to capture the value of multi-step behaviors. To resolve this challenge, we introduce Hierarchical Preference Learning (HPL), a hierarchical framework that optimizes LLM agents by leveraging preference signals at multiple, synergistic granularities. While HPL incorporates trajectory- and step-level DPO for global and local policy stability, its core innovation lies in group-level preference optimization guided by a dual-layer curriculum. Our approach first decomposes expert trajectories into semantically coherent action groups and then generates contrasting suboptimal groups to enable preference learning at a fine-grained, sub-task level. Then, instead of treating all preference pairs equally, HPL introduces a curriculum scheduler that organizes the learning process from simple to complex. This curriculum is structured along two axes: the group length, representing sub-task complexity, and the sample difficulty, defined by the reward gap between preferred and dispreferred action groups. Experiments on three challenging agent benchmarks show that HPL outperforms existing state-of-the-art methods. Our analyses demonstrate that the hierarchical DPO loss effectively integrates preference signals across multiple granularities, while the dual-layer curriculum is crucial for enabling the agent to solve a wide range of tasks, from simple behaviors to complex multi-step sequences.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.