Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

To Distill or Decide? Understanding the Algorithmic Trade-off in Partially Observable Reinforcement Learning (2510.03207v1)

Published 3 Oct 2025 in cs.LG

Abstract: Partial observability is a notorious challenge in reinforcement learning (RL), due to the need to learn complex, history-dependent policies. Recent empirical successes have used privileged expert distillation--which leverages availability of latent state information during training (e.g., from a simulator) to learn and imitate the optimal latent, Markovian policy--to disentangle the task of "learning to see" from "learning to act". While expert distillation is more computationally efficient than RL without latent state information, it also has well-documented failure modes. In this paper--through a simple but instructive theoretical model called the perturbed Block MDP, and controlled experiments on challenging simulated locomotion tasks--we investigate the algorithmic trade-off between privileged expert distillation and standard RL without privileged information. Our main findings are: (1) The trade-off empirically hinges on the stochasticity of the latent dynamics, as theoretically predicted by contrasting approximate decodability with belief contraction in the perturbed Block MDP; and (2) The optimal latent policy is not always the best latent policy to distill. Our results suggest new guidelines for effectively exploiting privileged information, potentially advancing the efficiency of policy learning across many practical partially observable domains.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 11 tweets and received 133 likes.

Upgrade to Pro to view all of the tweets about this paper: