Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Best-of-Majority: Minimax-Optimal Strategy for Pass@$k$ Inference Scaling (2510.03199v1)

Published 3 Oct 2025 in cs.LG and stat.ML

Abstract: LLM inference often generates a batch of candidates for a prompt and selects one via strategies like majority voting or Best-of- N (BoN). For difficult tasks, this single-shot selection often underperforms. Consequently, evaluations commonly report Pass@$k$: the agent may submit up to $k$ responses, and only the best of them is used when computing regret. Motivated by this, we study inference scaling in the more general Pass@$k$ inference setting, and prove that neither majority voting nor BoN exhibits the desirable scaling with $k$ and the sampling budget $N$. Combining the advantages of majority voting and BoN, we propose a new inference strategy called Best-of-Majority (BoM), with a pivotal step that restricts the candidates to the responses with high frequency in the $N$ samples before selecting the top-$k$ rewards. We prove that when the sampling budget is $N=\tilde\Omega(C*)$, the regret of BoM is $O(\epsilon_{\mathrm{opt}}+\sqrt{\epsilon_{\mathrm{RM}}2C*/k})$, where $C*$ is the coverage coefficient, $\epsilon_{\mathrm{RM}}$ is the estimation error of the reward model, and $\epsilon_{\mathrm{opt}}$ is the estimation error of reward at the optimal response. We further establish a matching lower bound, certifying that our algorithm is minimax optimal. Beyond optimality, BoM has a key advantage: unlike majority voting and BoN, its performance does not degrade when increasing $N$. Experimental results of inference on math problems show BoM outperforming both majority voting and BoN.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.