Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving Online-to-Nonconvex Conversion for Smooth Optimization via Double Optimism (2510.03167v1)

Published 3 Oct 2025 in math.OC and cs.LG

Abstract: A recent breakthrough in nonconvex optimization is the online-to-nonconvex conversion framework of \cite{cutkosky2023optimal}, which reformulates the task of finding an $\varepsilon$-first-order stationary point as an online learning problem. When both the gradient and the Hessian are Lipschitz continuous, instantiating this framework with two different online learners achieves a complexity of $\mathcal{O}(\varepsilon{-1.75}\log(1/\varepsilon))$ in the deterministic case and a complexity of $\mathcal{O}(\varepsilon{-3.5})$ in the stochastic case. However, this approach suffers from several limitations: (i) the deterministic method relies on a complex double-loop scheme that solves a fixed-point equation to construct hint vectors for an optimistic online learner, introducing an extra logarithmic factor; (ii) the stochastic method assumes a bounded second-order moment of the stochastic gradient, which is stronger than standard variance bounds; and (iii) different online learning algorithms are used in the two settings. In this paper, we address these issues by introducing an online optimistic gradient method based on a novel \textit{doubly optimistic hint function}. Specifically, we use the gradient at an extrapolated point as the hint, motivated by two optimistic assumptions: that the difference between the hint and the target gradient remains near constant, and that consecutive update directions change slowly due to smoothness. Our method eliminates the need for a double loop and removes the logarithmic factor. Furthermore, by simply replacing full gradients with stochastic gradients and under the standard assumption that their variance is bounded by $\sigma2$, we obtain a unified algorithm with complexity $\mathcal{O}(\varepsilon{-1.75} + \sigma2 \varepsilon{-3.5})$, smoothly interpolating between the best-known deterministic rate and the optimal stochastic rate.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube