Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

InsideOut: An EfficientNetV2-S Based Deep Learning Framework for Robust Multi-Class Facial Emotion Recognition (2510.03066v1)

Published 3 Oct 2025 in cs.CV

Abstract: Facial Emotion Recognition (FER) is a key task in affective computing, enabling applications in human-computer interaction, e-learning, healthcare, and safety systems. Despite advances in deep learning, FER remains challenging due to occlusions, illumination and pose variations, subtle intra-class differences, and dataset imbalance that hinders recognition of minority emotions. We present InsideOut, a reproducible FER framework built on EfficientNetV2-S with transfer learning, strong data augmentation, and imbalance-aware optimization. The approach standardizes FER2013 images, applies stratified splitting and augmentation, and fine-tunes a lightweight classification head with class-weighted loss to address skewed distributions. InsideOut achieves 62.8% accuracy with a macro averaged F1 of 0.590 on FER2013, showing competitive results compared to conventional CNN baselines. The novelty lies in demonstrating that efficient architectures, combined with tailored imbalance handling, can provide practical, transparent, and reproducible FER solutions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.