Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

TIT-Score: Evaluating Long-Prompt Based Text-to-Image Alignment via Text-to-Image-to-Text Consistency (2510.02987v1)

Published 3 Oct 2025 in cs.CV

Abstract: With the rapid advancement of large multimodal models (LMMs), recent text-to-image (T2I) models can generate high-quality images and demonstrate great alignment to short prompts. However, they still struggle to effectively understand and follow long and detailed prompts, displaying inconsistent generation. To address this challenge, we introduce LPG-Bench, a comprehensive benchmark for evaluating long-prompt-based text-to-image generation. LPG-Bench features 200 meticulously crafted prompts with an average length of over 250 words, approaching the input capacity of several leading commercial models. Using these prompts, we generate 2,600 images from 13 state-of-the-art models and further perform comprehensive human-ranked annotations. Based on LPG-Bench, we observe that state-of-the-art T2I alignment evaluation metrics exhibit poor consistency with human preferences on long-prompt-based image generation. To address the gap, we introduce a novel zero-shot metric based on text-to-image-to-text consistency, termed TIT, for evaluating long-prompt-generated images. The core concept of TIT is to quantify T2I alignment by directly comparing the consistency between the raw prompt and the LMM-produced description on the generated image, which includes an efficient score-based instantiation TIT-Score and a large-language-model (LLM) based instantiation TIT-Score-LLM. Extensive experiments demonstrate that our framework achieves superior alignment with human judgment compared to CLIP-score, LMM-score, etc., with TIT-Score-LLM attaining a 7.31% absolute improvement in pairwise accuracy over the strongest baseline. LPG-Bench and TIT methods together offer a deeper perspective to benchmark and foster the development of T2I models. All resources will be made publicly available.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube