Oracle-based Uniform Sampling from Convex Bodies (2510.02983v1)
Abstract: We propose new Markov chain Monte Carlo algorithms to sample a uniform distribution on a convex body $K$. Our algorithms are based on the Alternating Sampling Framework/proximal sampler, which uses Gibbs sampling on an augmented distribution and assumes access to the so-called restricted Gaussian oracle (RGO). The key contribution of this work is the efficient implementation of RGO for uniform sampling on $K$ via rejection sampling and access to either a projection oracle or a separation oracle on $K$. In both oracle cases, we establish non-asymptotic complexities to obtain unbiased samples where the accuracy is measured in R\'enyi divergence or $\chi2$-divergence.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.