Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Leave No TRACE: Black-box Detection of Copyrighted Dataset Usage in Large Language Models via Watermarking (2510.02962v1)

Published 3 Oct 2025 in cs.CL

Abstract: LLMs are increasingly fine-tuned on smaller, domain-specific datasets to improve downstream performance. These datasets often contain proprietary or copyrighted material, raising the need for reliable safeguards against unauthorized use. Existing membership inference attacks (MIAs) and dataset-inference methods typically require access to internal signals such as logits, while current black-box approaches often rely on handcrafted prompts or a clean reference dataset for calibration, both of which limit practical applicability. Watermarking is a promising alternative, but prior techniques can degrade text quality or reduce task performance. We propose TRACE, a practical framework for fully black-box detection of copyrighted dataset usage in LLM fine-tuning. \texttt{TRACE} rewrites datasets with distortion-free watermarks guided by a private key, ensuring both text quality and downstream utility. At detection time, we exploit the radioactivity effect of fine-tuning on watermarked data and introduce an entropy-gated procedure that selectively scores high-uncertainty tokens, substantially amplifying detection power. Across diverse datasets and model families, TRACE consistently achieves significant detections (p<0.05), often with extremely strong statistical evidence. Furthermore, it supports multi-dataset attribution and remains robust even after continued pretraining on large non-watermarked corpora. These results establish TRACE as a practical route to reliable black-box verification of copyrighted dataset usage. We will make our code available at: https://github.com/NusIoraPrivacy/TRACE.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube