Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Zero-Shot Robustness of Vision Language Models Via Confidence-Aware Weighting (2510.02913v1)

Published 3 Oct 2025 in cs.CV

Abstract: Vision-LLMs like CLIP demonstrate impressive zero-shot generalization but remain highly vulnerable to adversarial attacks. In this work, we propose Confidence-Aware Weighting (CAW) to enhance zero-shot robustness in vision-LLMs. CAW consists of two components: (1) a Confidence-Aware loss that prioritizes uncertain adversarial examples by scaling the KL divergence between clean and adversarial predictions, and (2) a feature alignment regularization that preserves semantic consistency by minimizing the distance between frozen and fine-tuned image encoder features on adversarial inputs. These components work jointly to improve both clean and robust accuracy without sacrificing generalization. Extensive experiments on TinyImageNet and 14 additional datasets show that CAW outperforms recent methods such as PMG-AFT and TGA-ZSR under strong attacks like AutoAttack, while using less memory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube