StepChain GraphRAG: Reasoning Over Knowledge Graphs for Multi-Hop Question Answering (2510.02827v1)
Abstract: Recent progress in retrieval-augmented generation (RAG) has led to more accurate and interpretable multi-hop question answering (QA). Yet, challenges persist in integrating iterative reasoning steps with external knowledge retrieval. To address this, we introduce StepChain GraphRAG, a framework that unites question decomposition with a Breadth-First Search (BFS) Reasoning Flow for enhanced multi-hop QA. Our approach first builds a global index over the corpus; at inference time, only retrieved passages are parsed on-the-fly into a knowledge graph, and the complex query is split into sub-questions. For each sub-question, a BFS-based traversal dynamically expands along relevant edges, assembling explicit evidence chains without overwhelming the LLM with superfluous context. Experiments on MuSiQue, 2WikiMultiHopQA, and HotpotQA show that StepChain GraphRAG achieves state-of-the-art Exact Match and F1 scores. StepChain GraphRAG lifts average EM by 2.57% and F1 by 2.13% over the SOTA method, achieving the largest gain on HotpotQA (+4.70% EM, +3.44% F1). StepChain GraphRAG also fosters enhanced explainability by preserving the chain-of-thought across intermediate retrieval steps. We conclude by discussing how future work can mitigate the computational overhead and address potential hallucinations from LLMs to refine efficiency and reliability in multi-hop QA.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.