Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

FlexiQ: Adaptive Mixed-Precision Quantization for Latency/Accuracy Trade-Offs in Deep Neural Networks (2510.02822v1)

Published 3 Oct 2025 in cs.LG

Abstract: Neural networks commonly execute on hardware accelerators such as NPUs and GPUs for their size and computation overhead. These accelerators are costly and it is hard to scale their resources to handle real-time workload fluctuations. We present FlexiQ, an adaptive mixed-precision quantization scheme for computer vision models. FlexiQ selectively applies low-bitwidth computation to feature channels with small value ranges and employs an efficient bit-lowering method to minimize quantization errors while maintaining inference accuracy. Furthermore, FlexiQ adjusts its low-bitwidth channel ratio in real time, enabling quantized models to effectively manage fluctuating inference workload. We implemented FlexiQ prototype, including the mixed-precision inference runtime on our custom NPU and GPUs. Evaluated on eleven convolution- and transformer-based vision models, FlexiQ achieves on average 6.6% higher accuracy for 4-bit models with finetuning and outperforms four state-of-the-art quantization techniques. Moreover, our mixed-precision models achieved an efficient accuracy-latency trade-off, with the 50% 4-bit model incurring only 0.6% accuracy loss while achieving 40% of the speedup of the 100% 4-bit model over 8-bit model. Latency evaluations on our NPU and GPUs confirmed that FlexiQ introduces minimal runtime overhead, demonstrating its hardware efficiency and overall performance benefits.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.