Papers
Topics
Authors
Recent
2000 character limit reached

IndiCASA: A Dataset and Bias Evaluation Framework in LLMs Using Contrastive Embedding Similarity in the Indian Context (2510.02742v1)

Published 3 Oct 2025 in cs.CL

Abstract: LLMs have gained significant traction across critical domains owing to their impressive contextual understanding and generative capabilities. However, their increasing deployment in high stakes applications necessitates rigorous evaluation of embedded biases, particularly in culturally diverse contexts like India where existing embedding-based bias assessment methods often fall short in capturing nuanced stereotypes. We propose an evaluation framework based on a encoder trained using contrastive learning that captures fine-grained bias through embedding similarity. We also introduce a novel dataset - IndiCASA (IndiBias-based Contextually Aligned Stereotypes and Anti-stereotypes) comprising 2,575 human-validated sentences spanning five demographic axes: caste, gender, religion, disability, and socioeconomic status. Our evaluation of multiple open-weight LLMs reveals that all models exhibit some degree of stereotypical bias, with disability related biases being notably persistent, and religion bias generally lower likely due to global debiasing efforts demonstrating the need for fairer model development.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.