A Statistical Method for Attack-Agnostic Adversarial Attack Detection with Compressive Sensing Comparison (2510.02707v1)
Abstract: Adversarial attacks present a significant threat to modern machine learning systems. Yet, existing detection methods often lack the ability to detect unseen attacks or detect different attack types with a high level of accuracy. In this work, we propose a statistical approach that establishes a detection baseline before a neural network's deployment, enabling effective real-time adversarial detection. We generate a metric of adversarial presence by comparing the behavior of a compressed/uncompressed neural network pair. Our method has been tested against state-of-the-art techniques, and it achieves near-perfect detection across a wide range of attack types. Moreover, it significantly reduces false positives, making it both reliable and practical for real-world applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.