Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

VisitHGNN: Heterogeneous Graph Neural Networks for Modeling Point-of-Interest Visit Patterns (2510.02702v1)

Published 3 Oct 2025 in cs.CE, cs.SI, and stat.ML

Abstract: Understanding how urban residents travel between neighborhoods and destinations is critical for transportation planning, mobility management, and public health. By mining historical origin-to-destination flow patterns with spatial, temporal, and functional relations among urban places, we estimate probabilities of visits from neighborhoods to specific destinations. These probabilities capture neighborhood-level contributions to citywide vehicular and foot traffic, supporting demand estimation, accessibility assessment, and multimodal planning. Particularly, we introduce VisitHGNN, a heterogeneous, relation-specific graph neural network designed to predict visit probabilities at individual Points of interest (POIs). POIs are characterized using numerical, JSON-derived, and textual attributes, augmented with fixed summaries of POI--POI spatial proximity, temporal co-activity, and brand affinity, while census block groups (CBGs) are described with 72 socio-demographic variables. CBGs are connected via spatial adjacency, and POIs and CBGs are linked through distance-annotated cross-type edges. Inference is constrained to a distance-based candidate set of plausible origin CBGs, and training minimizes a masked Kullback-Leibler (KL) divergence to yield probability distribution across the candidate set. Using weekly mobility data from Fulton County, Georgia, USA, VisitHGNN achieves strong predictive performance with mean KL divergence of 0.287, MAE of 0.008, Top-1 accuracy of 0.853, and R-square of 0.892, substantially outperforming pairwise MLP and distance-only baselines, and aligning closely with empirical visitation patterns (NDCG@50 = 0.966); Recall@5 = 0.611). The resulting distributions closely mirror observed travel behavior with high fidelity, highlighting the model's potential for decision support in urban planning, transportation policy, mobility system design, and public health.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: