Papers
Topics
Authors
Recent
2000 character limit reached

Agentic Additive Manufacturing Alloy Discovery (2510.02567v1)

Published 2 Oct 2025 in cs.AI and cs.LG

Abstract: Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy discovery remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. LLM enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as Thermo-Calc property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system developed in this work is able to effectively reason through complex user prompts and provide analysis on the printability of proposed alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to utilize LLM enabled agents to automate and accelerate the task of alloy discovery within the field of additive manufacturing and showcase the benefits of adopting this multi-agent system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: