Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Knowledge-Graph Based RAG System Evaluation Framework (2510.02549v1)

Published 2 Oct 2025 in cs.CL and cs.AI

Abstract: LLMs has become a significant research focus and is utilized in various fields, such as text generation and dialog systems. One of the most essential applications of LLM is Retrieval Augmented Generation (RAG), which greatly enhances generated content's reliability and relevance. However, evaluating RAG systems remains a challenging task. Traditional evaluation metrics struggle to effectively capture the key features of modern LLM-generated content that often exhibits high fluency and naturalness. Inspired by the RAGAS tool, a well-known RAG evaluation framework, we extended this framework into a KG-based evaluation paradigm, enabling multi-hop reasoning and semantic community clustering to derive more comprehensive scoring metrics. By incorporating these comprehensive evaluation criteria, we gain a deeper understanding of RAG systems and a more nuanced perspective on their performance. To validate the effectiveness of our approach, we compare its performance with RAGAS scores and construct a human-annotated subset to assess the correlation between human judgments and automated metrics. In addition, we conduct targeted experiments to demonstrate that our KG-based evaluation method is more sensitive to subtle semantic differences in generated outputs. Finally, we discuss the key challenges in evaluating RAG systems and highlight potential directions for future research.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 6 likes.