Papers
Topics
Authors
Recent
2000 character limit reached

Glaucoma Detection and Structured OCT Report Generation via a Fine-tuned Multimodal Large Language Model (2510.02403v1)

Published 1 Oct 2025 in q-bio.QM, cs.AI, and cs.CV

Abstract: Objective: To develop an explainable multimodal LLM (MM-LLM) that (1) screens optic nerve head (ONH) OCT circle scans for quality and (2) generates structured clinical reports that include glaucoma diagnosis and sector-wise retinal nerve fiber layer (RNFL) thinning assessments. Design: Retrospective cohort study of 1,310 subjects contributing 43,849 Spectralis ONH OCT circle scans (1,331 glaucomatous and 867 healthy eyes) from the DIGS and ADAGES cohorts. Methods: A MM-LLM (Llama 3.2 Vision-Instruct model) was fine-tuned to generate clinical descriptions of OCT imaging data. Training data included paired OCT images and automatically generated, structured clinical reports that described global and sectoral RNFL thinning. Poor-quality scans were labeled as unusable and paired with a fixed refusal statement. The model was evaluated on a held-out test set for three tasks: quality assessment, glaucoma detection, and RNFL thinning classification across seven anatomical sectors. Evaluation metrics included accuracy, sensitivity, specificity, precision, and F1-score. Model description quality was also evaluated using standard text evaluation metrics. Results: The model achieved 0.90 accuracy and 0.98 specificity for quality triage. For glaucoma detection, accuracy was 0.86 (sensitivity 0.91, specificity 0.73, F1-score 0.91). RNFL thinning prediction accuracy ranged from 0.83 to 0.94, with highest performance in global and temporal sectors. Text generation scores showed strong alignment with reference reports (BLEU: 0.82; ROUGE-1: 0.94; ROUGE-2: 0.87; ROUGE-L: 0.92; BERTScore-F1: 0.99). Conclusions: The fine-tuned MM-LLM generated accurate clinical descriptions based on OCT imaging. The model achieved high accuracy in identifying image quality issues and detecting glaucoma. The model also provided sectoral descriptions of RNFL thinning to help support clinical OCT evaluation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.