An Encoder-Decoder Network for Beamforming over Sparse Large-Scale MIMO Channels (2510.02355v1)
Abstract: We develop an end-to-end deep learning framework for downlink beamforming in large-scale sparse MIMO channels. The core is a deep EDN architecture with three modules: (i) an encoder NN, deployed at each user end, that compresses estimated downlink channels into low-dimensional latent vectors. The latent vector from each user is compressed and then fed back to the BS. (ii) a beamformer decoder NN at the BS that maps recovered latent vectors to beamformers, and (iii) a channel decoder NN at the BS that reconstructs downlink channels from recovered latent vectors to further refine the beamformers. The training of EDN leverages two key strategies: (a) semi-amortized learning, where the beamformer decoder NN contains an analytical gradient ascent during both training and inference stages, and (b) knowledge distillation, where the loss function consists of a supervised term and an unsupervised term, and starting from supervised training with MMSE beamformers, over the epochs, the model training gradually shifts toward unsupervised using the sum-rate objective. The proposed EDN beamforming framework is extended to both far-field and near-field hybrid beamforming scenarios. Extensive simulations validate its effectiveness under diverse network and channel conditions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.