CATMark: A Context-Aware Thresholding Framework for Robust Cross-Task Watermarking in Large Language Models (2510.02342v1)
Abstract: Watermarking algorithms for LLMs effectively identify machine-generated content by embedding and detecting hidden statistical features in text. However, such embedding leads to a decline in text quality, especially in low-entropy scenarios where performance needs improvement. Existing methods that rely on entropy thresholds often require significant computational resources for tuning and demonstrate poor adaptability to unknown or cross-task generation scenarios. We propose \textbf{C}ontext-\textbf{A}ware \textbf{T}hreshold watermarking ($\myalgo$), a novel framework that dynamically adjusts watermarking intensity based on real-time semantic context. $\myalgo$ partitions text generation into semantic states using logits clustering, establishing context-aware entropy thresholds that preserve fidelity in structured content while embedding robust watermarks. Crucially, it requires no pre-defined thresholds or task-specific tuning. Experiments show $\myalgo$ improves text quality in cross-tasks without sacrificing detection accuracy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.