Papers
Topics
Authors
Recent
2000 character limit reached

SpeechCT-CLIP: Distilling Text-Image Knowledge to Speech for Voice-Native Multimodal CT Analysis (2510.02322v1)

Published 24 Sep 2025 in eess.AS and cs.CL

Abstract: Spoken communication plays a central role in clinical workflows. In radiology, for example, most reports are created through dictation. Yet, nearly all medical AI systems rely exclusively on written text. In this work, we address this gap by exploring the feasibility of learning visual-language representations directly from spoken radiology reports. Specifically, we synthesize a large-scale dataset (Speech-RATE) of spoken radiology reports and train SpeechCT-CLIP, a contrastive model that aligns speech and 3D CT volumes in a shared representation space. While naive speech-based models underperform compared to text-trained counterparts, we show that knowledge distillation from a pretrained text-image CLIP model effectively transfers semantic alignment capabilities from text to speech, substantially narrowing this gap. Experiments demonstrate improved zero-shot classification F1 from 0.623 to 0.705, recovering 88% of the performance difference, and strong retrieval results without requiring text at inference. These findings highlight speech as a practical alternative to text in multimodal pretraining and open the door to voice-driven diagnostic support tools in clinical practice.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.