The Disparate Impacts of Speculative Decoding (2510.02128v1)
Abstract: The practice of speculative decoding, whereby inference is probabilistically supported by a smaller, cheaper, drafter'' model, has become a standard technique for systematically reducing the decoding time of LLMs. This paper conducts an analysis of speculative decoding through the lens of its potential disparate speed-up rates across tasks. Crucially, the paper shows that speed-up gained from speculative decoding is not uniformly distributed across tasks, consistently diminishing for under-fit, and often underrepresented tasks. To better understand this phenomenon, we derive an analysis to quantify this observed
unfairness'' and draw attention to the factors that motivate such disparate speed-ups to emerge. Further, guided by these insights, the paper proposes a mitigation strategy designed to reduce speed-up disparities and validates the approach across several model pairs, revealing on average a 12% improvement in our fairness metric.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.